If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x+x^2=45
We move all terms to the left:
5x+x^2-(45)=0
a = 1; b = 5; c = -45;
Δ = b2-4ac
Δ = 52-4·1·(-45)
Δ = 205
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{205}}{2*1}=\frac{-5-\sqrt{205}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{205}}{2*1}=\frac{-5+\sqrt{205}}{2} $
| (7/10)=x-(3/8) | | 13(y+3)=65 | | 5.46-4.49x-1.5x=28.222 | | 2x(8x+5)=-22 | | 2(8+3x)=4+10x | | x–3=2x–4 | | 2=√m/4 | | 7/10=x-3/8 | | 1.8c+32=89 | | 150–(2x+90)=4x | | 4x+5=1/2 | | 24=3q-15 | | 16p-13p=18 | | 10x+15x-9+1=-3x+1-9 | | 4a+14=50 | | 3(2x-2)+10=4x-4 | | 4e^2-9e+2=0 | | 17b+4=-9/2 | | 2(x+3)=-2x+30 | | 4/5x=66 | | 9x-14=x+58 | | 6y+3=81 | | 3x-7=39x+1) | | 4x+2(x-2)=7x+7 | | 9d−7d=16 | | 3/5y-2=1/9 | | 6x+17=7x-15 | | X^2=18x+81=0 | | 1=5n+2 | | X=4x-42 | | h-(-4)=2 | | 8-x5/7=-32 |